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NATIONAIL ADVISORY COMMITTEE FOR AERONAUTICS
TECHNICAL NOTE NO. 1676

GRAPHICAL METHOD OF OBTAINING THEORETICAL
LIFT DISTRIBUTIONS ON THIN WINGS
AT SUPERSONIC SPEEDS

By Clérence B, Cohen and John C, Evvard

SUMMARY

A graphical method is presented for calculating the linearized
lift distribution on thin wings at supersonic speeds. The technique
may be applied to all wing regions except those influenced by inter-
acting flow fielde off the wing-plan boundaries. The lifting-
pressure coefficients are obtained as the sum of a graphical line
integration and several terms that are functions of only the plan
form,

Pressure coefficients obtained by the graphical method for a
swept trapezoidal wing and for a wing with straight-swept leading
edge and parabolic wing-tip are compared with those derived by
cloged-form integration. The lift distributions for two plan forms
previcusly unsolved are also included.

INTRODUCTION

The evaluation of the theoretical performance of arbltrarily
gshaped wings at supersonic speeds has been retarded by the complex-
ities involved in analysis when the wing boundaries are other than
certain prescribed curves, usually straight lines, Solutions for
the velocity potential on an arbitrary wing surface are presented
in references 1 and 2 except for those regions influenced by inter-
acting flow fields off the wing-plan boundaries; the integrals
involved, however, have been tabulated only for speclal plan forms.
Although the integrals mey be so reduced that numerical evaluation
of the velocity potential is feasible, the procedure for obtalning
the 1lift distribution requires an additional numerical partlal 4if-
ferentiation that is cumbersome and of doubiful accuracy.

The 1ift distributions for a family of thin wings may be obtained
by the methods of reference 2 as the sum of an algebraic function
and a line integral. The line integral may be evaluated by numerical
or graphical methods.
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A graphical method formulated at the NACA Cleveland laboratory
for evaluating the 1lift distribution for wings of arbitrary plan
form within the limitations of reference 2 is presented. Also
included for a Mach number of A2 are curves showing the relations
between the algebraic functions and the geometry of the wing. The
application of the method to the various types of région encountered
in analyses of general wings is discussed. As illustrations, the
pregsure coefficients obtained by this graphical method are compared
with those derived by closed-form integration for a swept trapezoidal
wing and for a wing with a straight leading edge and parabolic wing-
tip boundaries. Lift distributions of two other plan forms are also
included to illustrate the application of the method.

SYMBOLS
The following symbols and subscripts are used in this report:

82, 8z, . « 8, coefficients in series expansion defining curva-
ture of leading edge

a', p', c', 4! quantities used in determining factor AF,

Cl e« o« o Cy coefficients in series representation of AFo

Cp pressure coefficient

AC:p contribution to Cp of portion of leading edge
included in segment of width ¢

Fq factor repregenting integral-function contribu-
tion to Cp

Fz factor representing contribution of integration
over width e to Cp

AFo error in F, due to neglecting curvature

H quantity representing numericel integration
along leading edge, . Anth

h parameter defining equilateral hyperbola

ky constant determining sweep of straight leading

edge
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M ’ free-stream Mach number

m slope of wing edge, %%

Q(e) . series defining curvature of leading edge

R ratio of distances, Ziﬁi_§lé§§l

r local radius of curvature

U free-stream velocity (parallel to x-axis)

u, v oblique coordinates whose axes lie parallel to
Mach lines

us(v) or vo(u) equation of tip and trailing edge of wing

vy (u) or uy(v) equation of supersonic leading edge of wing
1 1
(inboard of foremost tangent Mach wave)

X, ¥ Cartesian coordinates

' transformed y-coordinsate

o) angle of attack, radians

B = M2 -1

€ width of strip chosen in ewaluating Fo

el, 62 local angles between wing edge and free-stream
flow direction

€, 1 Cartesian coordinates of point sources

ol perturbation-velocity potential

Subscripts:

0 intersection of grid edge with wing-plan boundary

L leading edge of wing
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left
right

wing

ANATYSIS

As a result of the linearized theory, the effect of angle of
attack on the lift distribution of thin wings at supersonic speeds
depends upon the plan-form boundaries and is independent of the
wing-section slopes. Determination of the pressure distribution of
a thin flat plate therefore solves the problem of the lift distri-
bution of the finite-thickness wing. Reference 2 shows that the
local pressure coefficlents of several classes of wings with arbi-
trary plan boundaries may be evaluated by line integrals of explicit
functions.

A graphical method of evaluating the lift-distribution functions
presented in reference 2 is developed herein. In order to illus-
trate the method developed, a simple wing including regions influ-
enced by a supersonic leading edge, a subsonic leading edge, and a
subsonic trailing edge (fig. 1) is discussed in detall. The essen-
tial elements in the calculations for each region are included in
the analysis for the region B influenced by the subsonic leading

edge.

The pressure coefficient for region B as derlved in refer-
ence 2 is

c, =-X dn
P P .jg; V(g - w) (v = 7)

(1)

+

?- 1 - d.uz Vi - Vl(uz)
M vy Uy = U2

where up 1is evaluated at v = v,;. Except for the symbol 7,
equation (1) is expressed in a set of obligue coordinates (fig. 2)
whose axes are parallel to the Mach lines. The transformation
equations relating the oblique and Cartesian coordinates are

972
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u=§MB.(E-Bn) V=§M§(§+Bn)\

£=L (v+u) 1=g (v-u)

vy = gp (% - BY) vw=%(x+§3y) ’ ?
x=b%(vw+uw) Y=1%4(Vw‘“w)J

The significance of the terms of equation (1) is clarified in
figure 3., The line Integral is to be evaluated along the portion
of the supersonic leading edge from a %o b, _The quantity
[viy - v1(up)] can be interpreted as distance bc and the guantity
(uw - uz) can be interpreted as the distance cP. The ratio of
these distances is called R. For a given Mach number, the quan-

du
tity < 1l - a—;§> depends upon only the slope of the wing boundary
W

at the point (ug,v).

By use of equations (2), the second term of equation (1) may
be expressed in terms of R and the angle 67 that the wing edge
makes with the free-stream flow direction (parallel to the x-axis)
as

du.
2 2
Fl=ﬁ<l E)ﬁ
EE tan 67
=M(Btan91+l)ﬁ (3)

where 67 1is positive counterclockwise. This expression, eval-
uated for M =‘J§; appears in figure 4.

The quantities (w, - u) and (v, - v) in the line integral
of equation (1) are the coordinate distances (fig. 3) of each
element dn to the point (w,,v,). The curves of

= constant = h

1
V@ag - u) (v - v)
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in the u,v coordinate system are a family of equilateral hyper-
bolas asymptotic to the lines u = uy, v = V. A family of these

hyperbolas is shown in figure 5.

cL6

If a "grid" of this type is placed with its origin at (uy,vy)
and so alined that its axes are parallel to the u and v aXxes,

the value of L . for any element dn (or dy) is

Y(ug - w) (v - 7)
the constant h for the hyperbola passing through that element.
The sum of the values of h taken near the center of each element
for equal increments dn along the wing boundary then evaluates
the line integral of equation (1). The superposition of a wing-
plan boundary on a hyperbolic grid for M =42 is shown in fig-
ure 6. A constant value of An 1s marked on the grid for conven-
ience in sumation. A part of the grid employed for calculations
at M =42 appears in figure 7.

As shown in figure 5, the value of h increases to infinity
as the edge of the grid is approached. In order to perform a
numerical integration, the infinitles must be excluded. Therefore
the numerical summation should not start with element 1 (fig. 6)
but should skip a distance large enough to emable the element
value to be easlly determined. The part of the integral omitted
must be compensated by an analybtical expression that represents
the contribution of a section of the leading edge aa' included
in a strip of width ¢ (fig. 6).

The contribution to the line integral of the strip of width ¢
may be evaluated by assuming the wing boundary to be a straight
line near u = u,. From the derivation presented in appendix A,
this contribution is

'
Nl

, = 1 (4)
MA/(m8 - 1)(mp + 1) Me (1 + Pm)

F

where m = %%, the tangent of the angle 65 (positive counter-

clockwise) that the leading edge makes with the flow direction at
the intersection with the edge of the grid (point a, fig. 6), and
(v - vo) is the distance aP from that point to the grid origin

(fig. 6). The value of Fp for various values of 83, (v - V),
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and ¢ 1s shown in figure 8 for M = V2. The dashed line in fig-
ures 8(b) and 8(c) represents the limit for which the arc-tangent
term in equation (4) is real.

For the subsonic leading edge (region B, fig. 1), equations (1),
(3), and (4) may be combined and the expression for the pressure
coefficient becomes

cp=-%%(H+F1+FZ) (5)

wnere the numerical summation along the leading edge is repre-
sented by

H=4n(by + bz +hz + .. .) =4yl

If nonuniform increments of n are desired, a weighting of each
value of h 1s required.

The analysis of the region of a wing tip influenced by a sub-
sonic trailing edge (reglon C, fig. 1) may be appreciably shortened
if the Kutta-Jdoukowski condlitlon is imposed., In reference 2, it
is shown that the solution which satisfies the Kutta-Joukowskl con-
ditlon does not contain the term F;. Therefore F; 1s taken as

zero in this region and the remalning evaluation is unchanged.

When evaluating C, 1in a reglon where v<O0 (region A,
fig. 1, or fig. 9), the value F; does not exist because no sub-
gonic leading edge 1s included in the forward Mach cone from
point P. The Iintegration must be conducted over the entire wing
leading edge between the llimits of the grid & and b. Because
h becomes infinite at the right as well as at the left limit of
the grid, a part of the integration at the right must be replaced
by an analytical expression similar to equation (4). Equation (4)
can be shown to hold at this limit if (uy - ug) 1is substituted
for (v, - vg) and (180° - 67) is substituted for 63. If the
value of thils expression 1s designated Fz,r the pressure coef-
ficlent in the region where v <0 becomes

- . Mo
Cp = TT-E (7 + Fo + Fz,r) (5a)

In general, a complete wing in supersonic flow may have regions
under the influence of both wing tips. A summary of the method of
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obtaining lift distributions in the various types of flow field
commonly encountered is given in appendix B. Also included is a
numerical evaluation of the pressure coefficient at point P of
figure 10.

The effect of Mach number on 1lift distribution for a given
plan form may be determined by two altermate procedures. One
method is to construct an integration grid and curves of F; and
Fo for the Mach number desired. If a large number of analyses at
a given Mach number are to be made, this method may be preferable.
If only a very few analyses at a given Mach number are to be made,
however, the grid and curves of F; and Fp may be used as con-
structed for M = VE, provided that compensating corrections are
mede. These corrections consist in: (1) so transforming the wing
boundary that y' = By; and (2) analyzing the wing as at M = N2
end dividing the resultant Cp/d by the value of B.

Some considerations that simplify the application of the
method appear in appendix C. Construction of the integration grid,
choice of A7n and €, drawing size, and a special example of the
subsonic trailing edge are discussed.

ACCURACY OF METHOD

In order to determine the accuracy of the method, the pressure .
coefficient at points on two wings for which analytical expressions
were obtainable were graphically computed and compared with the
analytical values., The wings and the points considered appear in
figure 11. The leading edges of both wings are swept back 30° and
are the same except that wing A has a straight tip and wing B has
a parabolic tip passing through similar points on the leading and
trailing edges. The points considered are at the same x,y values
for each wing. The results of the computations for Cp are pre-
sented in table I.

The magnitude of the personal error incurred in application
of the method was evaluated by trial. Values of Cp/d were Inde-
pendently obtained by nonprofessional persomnel using the graphical
method, and were also analytically calculated. For wing A, the results
of one of the computers contained an average error of 0.46 percent
end a maximum error of 0.71 percent (table I). Another computer
averaged an error of 0.53 percent with a maximum error of 1.52 per-
cent. Results of wing B gave about the same accuracy (table I).
These results were obtained from drawings with a wing chord of
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4% inches, The computers estimated & time rate of approximately

5 minutes per peint when a large number of points were being
anslyzed.

Inasmuch es the first-order expression for F (which also
includes higher-order terms) assumed & straight leeding edge, this
expression was exact for the wings shown in figure 11, The accuracy
of this expression for a curved edge has been investigated and is
shown in appendix A. For a parabolic leading edge, the error AFs
in Fz (including fourth-order terms) as a function of the ratio
€/ro (where ry 1s the radius of curvature) is presented in fig-
ure 12. If e/rg 1is small, the error in Fp due to curvature
will be emall except when 6, epproaches the Mach angle, as indi-
cated in figure 12. The corresponding error in Cp will, of course,
be & smaller percentage. A similar trend probably holds for edges
of different curvature.

APPLICATIONS

As examples of the method, the lift distributlions 2Cp/a of a

circular-plan-form wing end a straight wing with a circular tip are
shown in figures 13 and 14, respectively, at M =4/2,

For the circular wing, in the reglon inboard of station D, the
pressure at a given chordwise station increases in the outboard
direction. For a glven spanwise station, the pressure 1s a maximum
at the leading edge and drops off in the flow direction, The rate
of this decrease ie a minimum &t the wing root.

Lines of constant pressure for the circular-tip wing swept
back 30° at a Mach number of 42 are shown in figure 14. The
Kutta-Joukowski condition was assumed for anslysis of regions
influenced by the subsonic trailing edge. The only region of high
pressures and high pressure gradients 1s a small leading-edge
reglon between the tangency of the foremost Mach wave and the start
of the subsonic trailing edge. The pressure gradient over most of
the tip is roughly in the spanwise direction.

CONCLUDING DISCUSSION

A graphical method based on linearized supersonic-flow theory
has been developed for calculating the 1ift distributions on thin
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wings at supersonic speeds. The method is applicable to all of the
regions of arbitrary wings except those affected by interacting
flow fields off the wing-plan boundaries. The determination of
the lifting-pressure coefficient for a given point has been found
to require 5 to 10 minutes with & resultant average error of less
than 1 percent as determined by comparison with known analytical
solutlons, "

Flight Propulsion Research Laboratory,
National Advisory Committee for Aeromautics,
Cleveland, Ohio, May 13, 1948.
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APPENDIX A

CONTRIBUTION TO Cp OF LEADING-EDGE SEGMENT
INCLUDED IN STRIP OF WIDTH ¢

In order to determine the contribution to Cp of a segment of

width ¢, +the integral of equation (1) must be evaluated. In the
X,y coordinate system, this integral is

aCp = - & f an (a1)
P Mx- ) g2 (v - )2

The integral is considered in the region near

(x - £5)% -2 (5 - ng)2 = 0 (a2)

The subscript O refers to the point of intersection of the grid
edge and the wing-plan boundary. In particular, the positive root
that defines the left forward Mach line from the point (,y) 1is

(x - &) =B (7 - 9) =& (v - vp) (3)

Treatment of ¢ as a variable in the vicinity of the point
(ngs £ o) vlelds

n=Tp+E€ ).
E=to+Z+Qle)
where ‘ (A4)
(& >
" <dz>o
and
Q(e) = azez + a3€3 + a4€4 + ... J
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Substitution of equation (A4) in equation (Al) gives

- (aCp) =/‘€ | a (5)
2a >
0 *\/Ec-io-I%-Q(c)]z-Bz(y-no-E)

Now, if Q(e€) = O, the leading edge is straight and the inte-
gral may be written

€
X de
- 25, (4Cp)
° - n? g2 2(x - £ o)
i) ot o251
(A6)
which becomes
-1
acy = - 22 2m tan-1 2pm (vy - Vo) .| 2
™ | Vi@ - 1)@e + 1) Me (1 + Pm)
(A6e)
From equation (5) of the text,
Fp = - ZE (a0,
1
2fm (v = Vn) 2
= 4pm tan~1 hd ° . 1 (A7)
MWmB - 1)(mp + 1) Me (1 + pm)

This function, which is equation (4) of the text, is shown in fig-
ure 8 for various values of 6 and (v, - Vg)/e for M =42,

If the leading edge is curved, Q(e) # O and equatlon (AS)
must be rearranged. The quantity in the radical may be expressed

as

972
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where

= (c' +d'e)e = [2132 (y - np) --2-—(x—-——€—o—)-] +<m—12- Bz>e €

a' = -
b=z (x-to) e-2(5)e- @
2 (x-¢tg)(mp - 1)
c' = -
ar o (1 - u p?%) (a8)

me

Then equation (AS) may be written

€
- E"_ (aCp) =[ de
o T
0 Va' 1l - -87

Expanded in a power series,

1

'bl
V-

‘Equation (AS) then becomes

(2. ]ae

1D 1.3

€ | = 2o = -

- == (aCp) = fae +f [2a'*2"4
20 Ova' 0 ,a'

The first term is identical with the integral of equation (A6).
The contribution of the curvature to F,; may therefore be written
as

(ASe)
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(@]
5
218

The expressions for % and in equation (A8) may be

2
Ya'
expanded in a power series to yield ‘

. a'

LI {[(x - €glagle + [(x - €plaz - f?- -4 (x- 50)32] e2

oo - 52 et (& ><x-£o>as+<d>ff

+(%:->2 (x - Eo)az] S 4. - }

where

(A10)

ol@
n
1
=t
+
=]
oo

Upon substitution of equation (A10) in equation (A9) and multi-
plication and collection of terms according to powers of ¢, there
results
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s /1Ne [ 2 3 5
AF, = 7K'<EF> A <;cle2 + 5Cpe 4 TCz€2 + « « « | de

5 5 1
<Cle§ + 0262 + 0352 4 o e > (ASa)
where

C; =3 (x - tolag

_ 2
Co =l -—-—----—-(331“ l)az +|:a3 ~——-—-—-———-382 z ](x - io)

5 4n T a(em - 1)
1 | 3(pm + 1)(SBm - 3)ay  (7Bm - 1)az® (3pm - l)ag
Czx = =
3 =3 > + + m
32mé(x - ) 16(pm - 1)
[ 32
3 5a
+| a4 2t 2 (x - tg) (A11)
| 2B -1) g(pm - 1)°
C4 = ¢ o o

The series of equation (A9a) converges as long as b'/a' and
d'e/c' (defined by equations (A8) and (Al0)) are less than unity.
For rapid convergence, these ratios should both be small.

As & particular example (taken at M =4/2), the leading-edge
curve may be represented by the parabola

= + £ 4 arel
t= & = +ap

The coefficients of equation (All) evaluated in terms of the oblique
coordinate distances then become
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1 F(Sm - 1la, 3NZ az.zm(vw - vo)
C2 =3 4m +

e

8(m - 1)

-31/5-(113 + 1)(5m - 3)ap  (Tm - l)azz 542 a.z.:smz(vw - Vo)
+ +

1
Cz = =
35T 32me (v - V) 16(m - 1) 16(m - 1)
. w o} - -
C4 = . . .

When the values of the coefficients are substituted in equation (ASa),
AF, results.

For a parabola with a given initial slope m at the point
(€p, np), the quantity ap controls the radius of curvature ry

at that point. The ratio AFp/F, represents the relative error

resulting from the assumption of a straight leading edge for a
width € when the actual edge is curved. This value from equa-
tions (A7) and (A9a) has been plotted against the ratio e/ro‘ in

figure 12.
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APPENDIX B

TREATMENT OF COMPLETE WINGS

A tabular summation of the various flow fields encountered in
wing problems is presented in table II and the graphical solution
in each region is indicated. In the reference sketches for
M= VE) P is the point at which the pressure coefficient is to be
evaluated. The numerical line integration along the supersonic
leading edge is performed from point &a to point b, The direc-
tion of integration of the line integrals is indicated by arrow-
heads on heavy lines. For a subsonic trailing edge (sketches C, F,
G, H), the Kutta-Joukowski condition was imposed and made F; = O
for that edge. The factor F, vanishes when the limit of the
leading-edge line integral is other than the integration-grid edge
(sketches D, E, F, G, H), because no infinities are then encountered.
When the forward-reflected Mach lines from the point P cross on
the wing surface (sketches E, F), the integration H is considered
negative,

The occurrence of these flow fields on a schematic wing is
illustrated in figure 15, XHach flow region is identified by the
corresponding letter from table IX. In this example, flow
region H does not occur,

As an example of the method, numerical calculations of the
pressure coefficient at point P for the wing boundary shown in
figure 10 are

61 = 7.5°
bc = 0.0419
— F, = 0.224
cd = 0.084 ) 1
R = 2° . 0.4988
cd J
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6, = 125.5°
(v - vg) = 0.0772 Fy = 0.660
€ = 0,01
H = 0.01 [(0.4)(31) + 25.0 + 21,0 + 18,85 + 17.55

+ 16.75 + 16.50 + 16.6] = 1.446

H
al
f

+ ¥§ (B + F + Fp)= 1.048

1676
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APPENDIX C

SIMPLIFYING CONSIDERATIONS IN APPLICATION OF METHOD

A simple method of obtalning coordinates of hyperbolas to con-
struct an integration grid employs log-log graph paper. If a
straight line of slope equal to -1 is drawn on this paper, the
cooriinates of this line, when plotted in Cartesian coordinates,
describe the desgired equilateral hyperbola.

The addition to the grid of lines of constant v and u
(parallel to the grid edges) with accompanying scales at the grid
edges increases the rapidity of evaluation, because all signifi-
cant distances may then be read directly. A part of the grid
enployed is given in figure 7.

In choosing the value of €, the first conslderation is that
€ be large enough that the value of h may be easily determined
for the first subsequent element. It is also seen from figure 8
that if € 1s taken as a simple decimal such as 0,01 or 0.02, and
(vw - vo) is known, the ratio (v, - vg)/€¢ may be rapidly computed
and hence Fp 1s rapldly determined., From figure 6, point a
will not, in general, fall at an integral multiple of An; then,
if € =NAn where N is an integer, point a' will not, in
general, fall on an integral multiple of A7n. Thus a section whose
width is less than An appears before the first complete leading-
edge element and remains to be included in the numerical integra=-
tion. If this small element is evaluated in the normal manner and
welghted according to its width, no discrepancy will occur. This
welghting process is illustrated by the example presented in
appendix B.

The most prevalent personal error in the application of the
method was in the measurement of angles 67 and 62, Dbecause
on smwall drawings it is difficult to Judge accurately the tangency
of a curve. lLarge-scale drawings are therefore recommended for
measuring the angles. These drawings may also be used for the
integration, although the increase in accuracy may not Justify the
accompanying inconvenience.

For a stralght supersonic leading edge, equation (1) is
integrable and the expression for Cp becomes
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3, ’:c‘c\\:
oa Vgt Kuy K+l ky (v, - up)
C = - e— - + an O —
P nB dvy, U, = Up " Y + Kjus

(c1)

In the region affected by the subsonic trailing edge (region abc
of vigs. 16 and 17) the first term in equation (Cl) vanishes if
the Kutta-Joukowski condition is imposed. The quantity in the
radical of the arc-tangent term is proportional to the ratio of
distances sP/rs (fig. 16) and hence any wing composed of the
gsame leading edge and a straight line through point s would give
the same value of Cp for any point on line sP. If lines of

constant pressure are desired, the arc-tangent term in equa-

tion (Cl) must be differentiated and set equal to zero. The result

involves a derlvative dug/avw, which is determined by the slope

of the edge at point s. Equivalent lines of constant pressure

along line 8P may thus be obtained by replacing the tip by a

straight-line tip that is tangent at point s. The pressure along

any v = constant line is therefore conical about a point deter- ,
mined by the intersection of the extension of the leading edge and

the tangent to the tip at up(vy). Along v =v; and v =7,

(fig. 17), the constant-pressure lines are conical about points g .
and tp. By this relation, the constant-pressure lines may be

quickly constructed and evaluation is necessary only along one line

of constant x +to determine the pressure field. The relation holds

only in the region influenced by the subsonic trailing edge when

the Xutta-Joukowskl condition applies, for differentiation of

equation (Cl) with the first term included yields a second deriv-

ative that generally cannot be evaluated from straight-line

relations.
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TABIE I
VALUES OF Cp/a OBTAINED FOR WINGS A AND B
Wing A Wing B
Station| u lv Cpfa Error Cp/e Error
(percent) (percent)
Analytic|Graphic Analytic|Graphic
1 80| 2.4570 2.468 0.44 2.457 2.447 0.16
2 7111 2.1354 2,148 .59 1.866 1.875 .48
3 6|2( 1.9826 1.975 .38 1.674 1.679 .30
4 513 1.8577 1.871 1 1,578 1.584 .38
5 414 | 1,7861 1.775 .62 1.744 1.733 .63
6 315 2.3877 2.400 .92
7 8121 2.0395 2.033 .32 1,775 1.759 .90
8 7131 1.9295 1.933 .18 1.689 1,682 .41
9 614 | 1.8367 1.827 .03 1.676 1.670 .36
10 5151 1.7861 1.797 .61 1.862 1.865 ".16
11 4|6 | 2,0147 2.012 .13
Average 0.46 0.42
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TABLE II - PRESSURE COEFFICIENT FOR EACH WING REGION

e of
region

Refer»nce figure

Pressure coefficient

Special features

— |

Ma
Cp = 1TF[H+ F2+F2,,]

Affected only by supersonic
leading edge.

= Ma
Cp= WE{ + P+ Fz]

Affected by subsonic and
supersonic leading
edges.

Affected by subsonic trail-
ing and supersonic lead-
ing edges. Kutta-
Joukowski condition
imposed. Fy = O.

- Ma
Cp— ,}3[}1+F1 *Fl,l]

Affected by supersonic and
both subsonic leading
edges. Fi ; found for
strip ad in same manner
as F; for strip bec,

ad

For = =

Fl,Z use Ry =

and measure 84 3

wise at point .

clock~

= Maf_

Affected by supersonic and
both subsonic leading
edges. F; ; determined
as for reglon D with

Be

Rl=g$'.

=\\Eﬁsé;?7

aLe
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TABLE II - PRESSURE COEFFICIENT FOR EACH WING REGION - Concluded

23

R

e of]
gion

Reference figure

Pressure coefficient

Special features

Ma
ﬂB[H * Fl"']

Affected by one subsonic
leading and one sub-
sonic tralling edge.
F1,1 determined as 5

previously with Ry = 3
Kutta~-Jowkowski con-
dition imposed on sub-
sonic trailing edge.
Fl = 0,

Affected by both subsonic
trailing edges. Kutta-
Joukowskl condition
imposed.

F= Fl,l = 0.

Wffected by both subsonie
trailing edges. Kutta-
Joukowskl condition
imposed.

Fl = Fl,l = 0,

Shaded reglon 1s affected
by externally interact-
ing flow filelds,
Solution not handled
by graphical method,




24 » ' . NACA TN No. 1676

A Region influenced by
supersonic leading edge U

B Region influenced by
subsonic leading edge

C Reglon influenced by
subsonic trailing edge

Supersonic leading edge

%, 4
A 2
Subsonic )
leading e
edge
»
(2
N .
&"6‘» ®
Subsonic
%99 trailing
*0‘\’ c edge
o
>
s e
o> ‘\}
°
Supersonic
trailing

edge ~_NACA

Figure 1. - Illustration of wing regions,.
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—>> ¥,M

Flgure 2, - Relation between oblique and Cartesian
coordlnates,
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Figure 3. - Geometric interpretation of terms in equation (1).
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(a) Range of R from O to 4,8,
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Figure 4. - Variation of factor F; with R and &, for M -'\/-2—.
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Figure 7.
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(c) Range of Fg from O to 8.8,
Figure 8, - Concluded. Variation of factor Fgp with (vy=-vg)/e for various
values of 8, at M= 2,




35

1676

NACA TN No.

*(0 > 1)

aLs

¥ uoi8ed Ul saoqouredaed - °6 0anITJ




972

. 1676
%

NACA TN No
//-b
%
20
%
mua! A

0.01

et

ANS \%&.A.r \;«N«.y i \\w.' \\V\_? \\\\P .
NS H T KNI N T 7777 K 0.
i<

, / ( b
/ LA “o. 3

/- i
15
6
-lgsé
\ »,
N '
N
' %
0
- Determination of Cp for specific wing boundary
at M =4A/2

Figure 10,
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(a) Wing A, {b) Wing B.

Figure 11, - Wings used for comparison of graphical and closed-form
solutions,
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NACA TN No. 1676
Qe) = 3262
ry = L (m24+1)%/2
28.2 m3
Yw=V0
€ rg positive
— 6l 87
/—10}.0 6l 67
ﬁzzzo.o ;rio.oo
//-20 0
¥/
o 7
(deg) ///
50 /
60
6. 67
10,0
/2010
// / 90
/ /
//
120 ol.o
6, 67
130 /
\
\\io.o
0.0
6, 67
0 «04 .08 .12 +16 « 20
e/ro ’

Figure 12, - Effect of curvature on factor Fy at M = 4[5.
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Supersonic
leading edge

Two-dimensional regime
C.
28 = 4.90

Subsonic
leading
edge

\- Subsonic
o trailing
edge

Supersonic

tralling
edge

Pilgure 14..~ Lift distribution for M =‘V2 on circular-tip wing swept back at 30°.

C.
225 on subsonic leading edge = oo, on subsonic trailing edge = O.
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Flow

supersonic leagding edge

Subsonic___/’///)e//"

leading
edge

Figure 15, - Wing illustrating reglons considered in table II.
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r v =-kju

Figure 16, - Wing with subsonic trailing edge and
straight supersonic leading edge.

Constant

pressure
Av)

< . <49 b SNACA,

Figure 17, - Determination of constant-pressure lines for wing with
straight supersonic leading edge in region influenced by subsonic
trailing edge.
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